機(jī)械社區(qū)

標(biāo)題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》 [打印本頁]

作者: 陳小黑    時(shí)間: 2015-1-9 22:34
標(biāo)題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
! ~( k( A" m+ n: M$ X% U) ^* D" |4 N) ~8 z
(, 下載次數(shù): 6) 6 I1 P+ W( Y: j7 Z, P2 ?& N# v# V
! z4 ?$ ?* R( c
(, 下載次數(shù): 6)
6 z. q0 R+ _4 s$ K/ d6 ^3 t% z5 v1 l+ Y' A" @5 `' K
目錄
& w5 E/ |" ]! t9 V6 f1 }2 I8 n" U2 P# v: B& B- {; @2 N6 b
Contents9 W$ L& C$ t8 F' p2 V
0 p! f, F- {8 _/ A6 q. ]" y& q
Preface page xvii/ i6 K$ R4 l  t) i/ \, ]
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I# x' ~2 x4 o9 |
1.1 Viscoelastic Phenomena 1+ e! f2 `% _* x, }: f
1.2 Motivations for Studying Viscoelasticity 39 R/ r  ]2 E( `2 `" G8 b
1.3 Transient Properties: Creep and Relaxation 38 V1 B$ [2 ?% b5 w0 {
1.3.1 Viscoelastic Functions J (t), E(t) 3$ A! @2 M9 _6 C
1.3.2 Solids and Liquids 74 M) N: y7 i0 Y8 g# K
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8( {0 _* S3 Y1 V5 q
1.5 Demonstration of Viscoelastic Behavior 100 T7 Y' y/ b+ Z* u7 ]* ?: R
1.6 Historical Aspects 10  ^- g" n( F3 G
1.7 Summary 11
; `9 w1 ]# O( S5 S; t1.8 Examples 11
; x  G" H; P1 O' l1.9 Problems 12
6 |6 L8 c. X9 RBibliography 12
3 W6 V8 j! ^" ?6 K
. E" W7 q, h& m( Y
$ W8 A" I2 ^5 }& j7 }* A4 @
) E: v( D2 x, k  ^2 g/ }
" v! Z5 n! S+ r1 p, _1 D4 i4 b; P. F( n. K4 m# E% V! H! M

% {! e$ J7 a+ A* E2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 @3 g' n4 }# z* X+ H8 N2.1 Introduction 14, q" G, z: }0 ^* }- c% H
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
8 \. c/ P8 y( L+ R* z. [: H# y# j2.2.1 Prediction of Recovery from Relaxation E(t) 14+ B6 {! }  K8 ]2 Z
2.2.2 Prediction of Response to Arbitrary Strain History 15
3 d* h$ `5 J! G* f2.3 Restrictions on the Viscoelastic Functions 17
% p5 Z, u8 i) a. z2.3.1 Roles of Energy and Passivity 172 m  m* i! P; N$ s! i" h
2.3.2 Fading Memory 18# r' z! w# [! f; u
2.4 Relation between Creep and Relaxation 19
' f* d& x, J1 ]8 U- y2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 195 ^6 |) {, Y! ]5 k$ @' y) K! B) P8 W
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
, ~1 u, b0 [! m4 x$ I. g, v9 M2.5 Stress versus Strain for Constant Strain Rate 203 k$ C0 ^" A, z2 M) |
2.6 Particular Creep and Relaxation Functions 211 _3 i6 ?* @% x( k0 X
2.6.1 Exponentials and Mechanical Models 211 U5 Q' I* e  O% Y( Q( G
2.6.2 Exponentials and Internal Causal Variables 26% Y+ k: K8 b  Q# ]3 H
2.6.3 Fractional Derivatives 27
3 @9 V* o) q, g2.6.4 Power-Law Behavior 283 k$ ^9 _7 S. E/ r9 j- g
2.6.5 Stretched Exponential 29! D' J; z& [2 j! Y
2.6.6 Logarithmic Creep; Kuhn Model 29
0 r* J3 d: ]$ E$ ?' K6 i2.6.7 Distinguishing among Viscoelastic Functions 30
2 _# {2 ]: e5 L/ I5 s2.7 Effect of Temperature 30
7 e3 V! }5 P7 n7 E5 c2.8 Three-Dimensional Linear Constitutive Equation 33: _" k  k6 I3 V0 O$ p1 U9 g
2.9 Aging Materials 357 F1 Y( k' E' O" X
2.10 Dielectric and Other Forms of Relaxation 35
; S& C: C7 W8 u2.11 Adaptive and “Smart” Materials 36
5 s* L' c% _7 }, W- }2.12 Effect of Nonlinearity 37
4 Q! p8 K! c& t' A. Q" p3 l: K2.12.1 Constitutive Equations 37
2 y7 M8 r$ w9 r* w% q3 S& z6 {3 [& @; b2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
2 J( T4 g6 }1 w/ I" r2.13 Summary 43
* b, ?# m$ w$ M2.14 Examples 43/ _+ X+ L( ?( X
2.15 Problems 51
3 q: E2 y2 q! k5 I7 IBibliography 52
: s, R  I5 B7 S, A7 R+ O  ?) u; v& a# r% c6 O! G) }2 p
/ k0 r1 T6 w7 ]) k" X, Y
' P! z# [  j, O

1 X& U# I+ N8 v$ A2 O3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55- i* h& l; x4 I, O; G0 L
3.1 Introduction and Rationale 552 v" h3 n) {! E$ S# U# l
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
8 x, ~$ s7 G0 J3.2.1 Response to Sinusoidal Input 57  |% g8 p' \" G
3.2.2 Dynamic Stress–Strain Relation 59
2 I3 Z; y: `' E" K3.2.3 Standard Linear Solid 62- y1 K" n. X9 g2 p  r
3.3 Kramers–Kronig Relations 63
) [, D1 ~( \* D3 `9 A# \3.4 Energy Storage and Dissipation 653 S2 {' z; _3 m, j( ?% c" ~
3.5 Resonance of Structural Members 671 j" Z! q9 X- c  |4 G6 t+ w4 e
3.5.1 Resonance, Lumped System 67$ r1 m5 g. Y, K, T
3.5.2 Resonance, Distributed System 71( ?4 d! g) e$ e5 Y$ J
3.6 Decay of Resonant Vibration 74
5 {  B' p( F* m: R- U# E, G0 G3.7 Wave Propagation and Attenuation 776 t8 x" v* T: u6 S! x
3.8 Measures of Damping 79
, v* ~3 P5 {+ H. k# [  A3.9 Nonlinear Materials 791 `/ U# k# ^, {+ T2 t$ }  |
3.10 Summary 81
) S% k# V' |2 o8 ]! j+ |3.11 Examples 81
- b' _, i" J. I3.12 Problems 887 W$ [. x# ~7 L6 U. R8 {
Bibliography 896 f; O! b/ n+ t' `

  ?0 r) ?# X; e( s2 T$ I3 w% l' _; ^: A( ]! F3 s2 s
" G! q4 Z# n/ ^" ^( D8 j
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
! C5 o2 i& _. ]7 _' `. j  {9 D4.1 Introduction 911 j# I9 Y, D+ H4 J, [' v5 |
4.2 Spectra in Linear Viscoelasticity 92- @. j) {) v' [" v* a: ?
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92& p2 t& X, S; z/ [8 C
4.2.2 Particular Spectra 93/ U9 ^( {$ e) J' N$ F- k( j$ A
4.3 Approximate Interrelations of Viscoelastic Functions 95
: E* F/ e$ X2 ?3 D4 s4.3.1 Interrelations Involving the Spectra 95
/ O! r8 J4 v( _7 E5 T1 J! D) L4.3.2 Interrelations Involving Measurable Functions 98
& w1 u8 @: e: T4.3.3 Summary, Approximate Relations 101! }0 F* ^9 z. H
4.4 Conceptual Organization of the Viscoelastic Functions 1018 \! L$ A) @( Y2 b$ d( d, R
4.5 Summary 104/ m1 O  }4 e* D0 }& |8 q
4.6 Examples 104
) l# O# s& I0 s4.7 Problems 109
# P) f' Q+ h5 J$ b' m3 A& ZBibliography 109
0 y, D+ r# k) _' r4 i! b( b7 h+ @/ N6 ]1 B% R& c1 t

2 O! q( ?7 u+ X4 B) w. v- E) B! P. E: p
4 h2 z6 \, p6 H/ {  H* @, C9 H5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
& U2 O' Y0 M* z) s/ i5.1 Introduction 111
4 Z; h! o, D( d2 }5 B. t* L) W5.2 Three-Dimensional Constitutive Equation 111
* @+ N" ?0 A8 m5.3 Pure Bending by Direct Construction 112
+ v$ Y) P" T! F. A5.4 Correspondence Principle 1141 y: g# e5 j0 w1 D) F% z8 X
5.5 Pure Bending by Correspondence 116
! y7 ?0 A$ z% y: p5.6 Correspondence Principle in Three Dimensions 116( ^. ~/ `6 R* N: b2 X
5.6.1 Constitutive Equations 116
: V/ s3 H6 z3 {5 N2 c5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
. |1 o- n$ F- X8 f2 O5.6.3 Viscoelastic Rod Held at Constant Extension 119% r1 \& ]0 S& h! p
5.6.4 Stress Concentration 119
  q+ B! P9 n" S% r3 v2 s$ ]: R% \5.6.5 Saint Venant’s Principle 120
, d7 j( n1 a- ~( S8 `$ k5 D5.7 Poisson’s Ratio ν(t) 121+ g  [2 w& n; E2 t7 T, Q
5.7.1 Relaxation in Tension 121
: j* g- S# A" O# W) h5.7.2 Creep in Tension 1238 z5 x: _. ]$ [1 m4 i& K
5.8 Dynamic Problems: Effects of Inertia 124% B: ~, P3 v1 \: E1 @- V$ q
5.8.1 Longitudinal Vibration and Waves in a Rod 124
; r, X' Z8 I0 L8 m) j5.8.2 Torsional Waves and Vibration in a Rod 125
5 H* G" P6 @8 c) w: d# i5.8.3 Bending Waves and Vibration 128
' G) j7 `9 g5 c% m5.8.4 Waves in Three Dimensions 129, a* M$ s# O) J+ r8 [
5.9 Noncorrespondence Problems 1315 q2 X6 q/ M& ?; K$ D
5.9.1 Solution by Direct Construction: Example 131
  Y5 L8 m  P6 Z# n5 S# A5.9.2 A Generalized Correspondence Principle 132
: L, b3 n* L! B* }7 s5.9.3 Contact Problems 132
8 |/ {" m* ^7 n/ n' t" @+ O& n  ?5.10 Bending in Nonlinear Viscoelasticity 133
4 W. o( n9 s6 s1 j5.11 Summary 134
' U3 v$ h9 E% a5 t5.12 Examples 134
  }, j4 C) }- \& w! f3 s5.13 Problems 1423 N. m. h+ V0 V. F) A7 X
Bibliography 142
7 r: Q5 N# x4 `# `( `; G
5 l( r' O2 Z6 h  q' L6 R+ Z* a( O' E# G( \0 Q$ Q
! `6 \" a) y0 F8 d! u9 C0 S% o
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145( l3 I! l7 T  E+ e% {+ L* v4 n
6.1 Introduction and General Requirements 145- U$ l/ k; o# i2 ?
6.2 Creep 146% w8 _0 \* c5 j: P' {# M, c
6.2.1 Creep: Simple Methods to Obtain J (t) 146& K6 F/ `1 W3 @, I
6.2.2 Effect of Risetime in Transient Tests 146
3 Q- b1 A2 X( z8 F( t: r6 }6.2.3 Creep in Anisotropic Media 148
6 y4 r! B& t3 E' h6.2.4 Creep in Nonlinear Media 1484 ]& Z2 ?( T+ v% X' h
6.3 Inference of Moduli 150
( l& x- J: T8 N& \" d6.3.1 Use of Analytical Solutions 150
" F$ P) e4 i1 S6.3.2 Compression of a Block 151+ y2 z9 W; e( E" [1 ?* B; c' [# Y, a# w2 p7 M
6.4 Displacement and Strain Measurement 152$ O* Y) j+ t( n" C
6.5 Force Measurement 156- J9 l5 S5 N7 {, o2 o: D) q
6.6 Load Application 157
2 O% R( P6 y7 O! h* g: m6.7 Environmental Control 157
+ u" o5 f4 D$ Z" @6.8 Subresonant Dynamic Methods 158
0 O8 l3 s# \) i8 t& j0 w. o6.8.1 Phase Determination 158
3 `: {4 c& }/ B6.8.2 Nonlinear Materials 1605 I- N' C& f) V! [+ t8 ^0 S* ~
6.8.3 Rebound Test 161
, Y8 r) c9 ~6 h: [9 L; b6.9 Resonance Methods 161
3 ~. Z( C! w( c6.9.1 General Principles 161
8 ~+ b! @; D/ ]7 k" w) B0 ]  E7 \6.9.2 Particular Resonance Methods 1635 Z% A  s. ~+ t$ W
6.9.3 Methods for Low-Loss or High-Loss Materials 166# o- t4 a! N( E, S
6.9.4 Resonant Ultrasound Spectroscopy 1681 n4 l2 y4 S% [) b( M: ]
6.10 Achieving a Wide Range of Time or Frequency 171
: Z* `  l  O4 i2 o6.10.1 Rationale 171# p- j- }' ]7 s' T
6.10.2 Multiple Instruments and Long Creep 172
7 a4 t8 c5 c5 Q, }9 ]6.10.3 Time–Temperature Superposition 1728 |6 B; x* K+ j2 z! v4 Q
6.11 Test Instruments for Viscoelasticity 173
! h. P# A8 H/ i$ H3 Q- `6.11.1 Servohydraulic Test Machines 173
- V4 Y5 u! l' @* X6.11.2A Relaxation Instrument 1745 p( a$ Q# F( C1 [3 v
6.11.3 Driven Torsion Pendulum Devices 174& |- i( T! L5 h
6.11.4 Commercial Viscoelastic Instrumentation 178- _4 I. O9 S$ l$ x
6.11.5 Instruments for a Wide Range of Time and Frequency 179  d; q+ D% O" S! G8 U4 j  ?
6.11.6 Fluctuation–Dissipation Relation 182( Q. \, S( u8 `, Q( J5 l
6.11.7 Mapping Properties by Indentation 183" y1 l: D1 ?5 R* Q% |
6.12 Wave Methods 184
  d, p6 L/ N" N6.13 Summary 1881 _# N8 _& w/ D( x% i
6.14 Examples 188! D) j# ~6 n. r0 Q" ?
6.15 Problems 2001 J4 m$ P, C  S( [/ e
Bibliography 201
; X# ]" m( n+ a1 v' Y
7 r# S/ d$ D& j  t1 j. ^; a' O* Z. s: K" t: y* U2 A' |8 |+ w9 P7 I9 U6 N

5 S+ x6 v* r1 w# r% ~7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 2079 g7 e: T; o4 ]9 O" S
7.1 Introduction 207' F! B1 J3 ]6 v! J" f5 p
7.1.1 Rationale 207
! K4 Z4 R, M* G( P  G0 {7.1.2 Overview: Some Common Materials 207
7 u5 D: ]0 D& O" b' ?! {8 g7.2 Polymers 2087 s' c9 D& ]( B8 Y' L6 K- ^
7.2.1 Shear and Extension in Amorphous Polymers 208% Z/ O4 p2 {; t" N6 t
7.2.2 Bulk Relaxation in Amorphous Polymers 212
& I& v# S3 R& R. F  }1 @# a7 [7.2.3 Crystalline Polymers 213+ f6 q% t! ~% f8 o, O; W
7.2.4 Aging and other Relaxations 214
" G3 v+ n! T/ w+ ], [. w7.2.5 Piezoelectric Polymers 214
) ~6 o/ N) W4 ~: Z8 R2 B7.2.6 Asphalt 214
* H' E4 A4 W  n1 e! T7.3 Metals 215; V; g; P" c7 D$ L1 W3 j1 S
7.3.1 Linear Regime of Metals 215
8 p: i2 J! e1 m; X7.3.2 Nonlinear Regime of Metals 2174 r8 G6 J" i3 P9 ~0 v1 M
7.3.3 High-Damping Metals and Alloys 219
) T3 W( p0 U+ X" w* k, h7.3.4 Creep-Resistant Alloys 224  n' h; q: I' I& Q! O6 y
7.3.5 Semiconductors and Amorphous Elements 225
/ J/ x; s. X. o) \; o7.3.6 Semiconductors and Acoustic Amplification 226: @) _$ O1 q# A
7.3.7 Nanoscale Properties 2265 Q$ L& x9 }! Z
7.4 Ceramics 227& f, e9 T$ k" b0 c" O* l7 T
7.4.1 Rocks 227. \% e% N  J" n& g
7.4.2 Concrete 229
( j0 C/ o% o+ _; d/ c7.4.3 Inorganic Glassy Materials 231
$ j2 K2 R( M) @# m' W9 h7.4.4 Ice 231
0 H& H, A) b: i7.4.5 Piezoelectric Ceramics 232$ Z( o, k8 [$ I4 f- ?: k
7.5 Biological Composite Materials 233
) [5 U' v* A" L9 m3 Z7.5.1 Constitutive Equations 234
8 a5 h7 E7 Q! q  V7.5.2 Hard Tissue: Bone 234# j9 |2 x" j0 z, T( U3 h! V
7.5.3 Collagen, Elastin, Proteoglycans 2367 W- u3 x6 t: J
7.5.4 Ligament and Tendon 237
0 E- Q6 J& {& z# |8 u' b: p7 a. M7.5.5 Muscle 240
. L8 t+ S+ g3 N( Z8 }% X/ v7.5.6 Fat 243
) n' z1 s- I- y; j& I" X3 ]! I1 l7.5.7 Brain 243, D5 y' O# N# _4 \$ l% E5 K; u
7.5.8 Vocal Folds 244& `+ [8 B! u+ v$ U
7.5.9 Cartilage and Joints 244* N* a# K% p# R% p  X) y
7.5.10 Kidney and Liver 246
. K* }% W/ o8 }& H. f6 g, L5 C2 J7.5.11 Uterus and Cervix 246
  ^/ T1 U0 P5 _. W8 Y3 ?( z2 b6 U2 P4 C7.5.12 Arteries 247/ ^! T% D# C' X/ d6 b* v" N
7.5.13 Lung 248
( f0 B# i( f/ g& Z3 A) [. I7.5.14 The Ear 248( h8 k0 U, @. W$ q& ^
7.5.15 The Eye 249
% Y- E# T. S! O5 ^7.5.16 Tissue Comparison 251
4 k  V+ j' }9 k5 R3 ^8 }7.5.17 Plant Seeds 2527 ~" U6 C' m3 \7 d( x* D. B
7.5.18 Wood 252
7 k  b2 x0 G; U# ]7.5.19 Soft Plant Tissue: Apple, Potato 253
0 A% F3 S- }" Y5 s+ t7.6 Common Aspects 253
/ G1 A- y7 q0 o# N# E% Z7.6.1 Temperature Dependence 253) x! D7 K4 U, _5 r; t* y
7.6.2 High-Temperature Background 254! ?0 R- B$ |3 G3 L5 q3 N! B" d
7.6.3 Negative Damping and Acoustic Emission 255
( u6 S$ `1 w% A/ h7.7 Summary 255" p' {7 W- z7 U6 T
7.8 Examples 2557 d' s$ y6 I& H* n$ Y& K. i. C1 B. k
7.9 Problems 256
+ X5 K, H- N1 f' G3 RBibliography 257
* U: [2 [4 W1 K4 h: [2 ~
% \! r, }6 P) G) u1 S' y  m
1 r( Y" S, E5 @, j
! |8 M  Z, i( I* j& w  p8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
) P& t8 \! H( n, x. U4 r! ^8.1 Introduction 271
7 h6 D7 Z' i% W/ m/ t$ U* V, w* d4 l8.1.1 Rationale 271- O" m% `9 |7 d4 s
8.1.2 Survey of Viscoelastic Mechanisms 2710 \5 W8 s6 O6 }% j% @
8.1.3 Coupled Fields 273
7 C& X& D& }' N: t" {2 {' r1 [4 w8.2 Thermoelastic Relaxation 274) o1 D3 M1 a, l% a5 h: D4 K5 U8 ^
8.2.1 Thermoelasticity in One Dimension 274# k: N+ r9 f$ y, n6 W1 }
8.2.2 Thermoelasticity in Three Dimensions 2756 e9 k8 F: a5 Q$ @7 `% q1 z+ a
8.2.3 Thermoelastic Relaxation Kinetics 276
0 u1 F0 ~6 D* I; {5 ?& q; {# p: ]8.2.4 Heterogeneity and Thermoelastic Damping 2784 ~& u/ G2 e/ H- p
8.2.5 Material Properties and Thermoelastic Damping 280+ ~, e0 Y4 z+ B" o! o' X
8.3 Relaxation by Stress-Induced Fluid Motion 2805 l- T* ?. e4 W
8.3.1 Fluid Motion in One Dimension 2804 Z1 t4 _9 h1 e2 n+ R5 t* {
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
6 r7 _( H& z* B2 h! H4 }8.4 Relaxation by Molecular Rearrangement 286) |$ r1 q/ p0 P  W
8.4.1 Glassy Region 286% {- Z* O7 f" k4 R
8.4.2 Transition Region 2879 l3 n" A; R; ~& H: G
8.4.3 Rubbery Behavior 289
* B7 D3 Y' i+ _$ P( E8.4.4 Crystalline Polymers 291' `  ~/ ^* o$ _
8.4.5 Biological Macromolecules 292
" ]! ^7 \% U! L# [& T9 b8.4.6 Polymers and Metals 292
0 k2 {& f8 j8 i( T1 R9 z8.5 Relaxation by Interface Motion 292
8 g0 P  t2 a; s8 \7 k+ m3 d* C0 t7 P8.5.1 Grain Boundary Slip in Metals 292
% P! ~- k- h6 C7 N, M  @) D: s, n8.5.2 Interface Motion in Composites 294
) y2 J) G( q! }  E. z3 L$ x8.5.3 Structural Interface Motion 294) S% e" a& t3 X7 C& r. j' P
8.6 Relaxation Processes in Crystalline Materials 294
/ ?8 r3 H. N: i* K) s8.6.1 Snoek Relaxation: Interstitial Atoms 294
4 Q1 x0 H" h. r' O5 g' g0 w8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 2983 j$ F" r2 o5 G* w% S% }
8.6.3 Gorsky Relaxation 299
& v$ r1 P; j9 ~3 {, U9 B7 W0 M1 j8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
" ?9 y% v) ^* s- p8.6.5 Bordoni Relaxation: Dislocation Kinks 303, q8 o: O: ]9 Q- X1 f
8.6.6 Relaxation Due to Phase Transformations 305+ Q9 C* p% [) i+ p/ M$ D5 V1 H
8.6.7 High-Temperature Background 314+ y5 J3 @0 g; u0 I  @& t8 M
8.6.8 Nonremovable Relaxations 315
4 s& x7 [' r/ t8.6.9 Damping Due to Wave Scattering 316, a0 v; y: M; [& v  l: U9 J5 `
8.7 Magnetic and Piezoelectric Materials 3161 ~. Q6 J, U3 ?3 M; i8 J5 w
8.7.1 Relaxation in Magnetic Media 316
# m( {1 i9 Y4 r: b4 n) n3 E8.7.2 Relaxation in Piezoelectric Materials 3180 {" K: Y* }# o/ _* V8 |/ A
8.8 Nonexponential Relaxation 322( ], |; v% c* s& ]
8.9 Concepts for Material Design 3231 x. ?. `1 U  p
8.9.1 Multiple Causes: Deformation Mechanism Maps 323, _0 r7 h" x3 |, p  z$ b8 g5 I2 r
8.9.2 Damping Mechanisms in High-Loss Alloys 3260 @9 L4 D/ q& e$ B/ O% D
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326' G* P% T& o! j  t, P
8.10 Relaxation at Very Long Times 327% g- o' ~3 N/ }$ K8 ^! L3 F! p
8.11 Summary 327- H& J* G. O6 \% K
8.12 Examples 328
2 {% V2 t" o: x8.13 Problems and Questions 3324 ~0 n; W3 |/ L% d5 ~: q" c0 _; w
Bibliography 332+ l+ }* T: A+ r- v) D
4 ]. P" W. ^/ d, Z
- G0 i9 ~  k! r) I, o$ ~
9 Q; J6 i5 R" B: q9 j; V/ f
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 3410 C  ~( Z$ P4 O7 V' w2 G* L
9.1 Introduction 341
* Y8 Q1 h4 w9 v3 p4 y' i9.2 Composite Structures and Properties 341
3 P. _6 k$ \% x; U' Y+ U9.2.1 Ideal Structures 341& \1 M. }3 g" m; y
9.2.2 Anisotropy due to Structure 342# Q0 F5 }6 z# n- ?
9.3 Prediction of Elastic and Viscoelastic Properties 344
) P9 w" e" F" K9.3.1 Basic Structures: Correspondence Solutions 344
1 b( P8 ]8 d1 F9.3.2 Voigt Composite 3452 j7 M% q% p9 }2 ]' _7 a
9.3.3 Reuss Composite 345! J; s8 l! P! V$ w! t" n( o( B
9.3.4 Hashin–Shtrikman Composite 346' q, u- M& |- h5 y6 g/ C3 V: N: X
9.3.5 Spherical Particulate Inclusions 347& N/ T7 \8 I* a' m( i5 D
9.3.6 Fiber Inclusions 349
& [3 H+ A# q4 f7 H, H" A) x; U9.3.7 Platelet Inclusions 349/ K) b- B$ N7 Q, v
9.3.8 Stiffness-Loss Maps 3501 p+ P& w: k; q; y$ q, p. ?
9.4 Bounds on the Viscoelastic Properties 353
2 J7 L1 W) d$ w3 u, ]: h9.5 Extremal Composites 354/ U* A/ r+ b) g- ]2 _6 K
9.6 Biological Composite Materials 356  @# g) O5 |: l7 J( Y- k/ F
9.7 Poisson’s Ratio of Viscoelastic Composites 357
* H7 q% m- \. {9 r5 Z1 O+ Z8 q9.8 Particulate and Fibrous Composite Materials 358: Y4 U; G2 `5 y5 G$ U
9.8.1 Structure 358& w  F3 B0 K1 n: z
9.8.2 Particulate Polymer Matrix Composites 359! a$ }! l( g3 J
9.8.3 Fibrous Polymer Matrix Composites 361  t8 z& I! G; ^" t8 Z
9.8.4 Metal–Matrix Composites 362
0 N1 @" R5 M3 E+ I9.9 Cellular Solids 363
' V* ^  L; @/ f0 @9.10 Piezoelectric Composites 366, ~) a" Q" F% }: e! q6 ~
9.11 Dispersion of Waves in Composites 366" |( J: ^; R: o" C9 V2 p, a
9.12 Summary 367
; g" j$ _. C/ k1 z8 j% J2 O9.13 Examples 367$ }# f' t: d" g, y/ e
9.14 Problems 370
  j- {7 Z& \" j. L: Y/ E. hBibliography 370
7 ]6 P. x) Z7 s$ T! y! g/ a4 S+ r( k- n
$ j( w0 }* x, f" d$ w0 o! D
# T5 F( u9 |; s* U. L7 k4 K. a% |
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377' S7 ?% e  d8 y3 q/ e# \+ W( A: D
10.1 Introduction 377/ Q$ F3 s5 Z& Z& M  ^  o  B0 G4 F
10.2 A Viscoelastic Earplug: Use of Recovery 377
* l- B1 u- d1 i+ }, {# }+ A: H: P10.3 Creep and Relaxation of Materials and Structures 378$ F/ F* k$ R, n% r% Q: N
10.3.1 Concrete 378
8 c* T' b; k# g10.3.2 Wood 378
; O" M: L$ \3 V$ m7 A10.3.3 Power Lines 379. }, k! H2 P9 D; i9 s9 k
10.3.4 Glass Sag: Flowing Window Panes 380
5 X- i' \* M2 b10.3.5 Indentation: Road Rutting 380
$ R; ^5 T( G2 u3 m/ a: t10.3.6 Leather 3814 |  R; N- Q) f( g
10.3.7 Creep-Resistant Alloys and Turbine Blades 381
0 W5 l7 H& x" a: X10.3.8 Loosening of Bolts and Screws 382/ M7 T+ }  E3 N, o( A
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
# ?$ ~. Z5 {4 _: F/ o" }1 s10.3.10 Earth, Rock, and Ice 385. S( f) r1 j3 D2 C
10.3.11 Solder 386
- g+ G" `) w1 x8 y2 J( T6 r10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
8 O6 N; C& J. ]0 u, e+ R( |10.3.13Tires: Flat-Spotting and Swelling 3889 g, a0 \  Z( G, E6 Z
10.3.14Cushionsfor Seats and Wheelchairs 388
! j  a& P+ ~  ?6 B& j7 z$ [10.3.15 Artificial Joints 389
7 F, |7 D$ e, Q- s& u10.3.16 Dental Fillings 389
# D* y( i' c3 s' d% O; Z7 I10.3.17 Food Products 389
& z+ v( R; G4 k10.3.18 Seals and Gaskets 3905 I7 S: ~$ O- H- w8 i* q* p
10.3.19 Relaxationi nM usical Instrument Strings 390
/ ]# h8 |2 j$ F9 L: [10.3.20 Winding of Tape 391
# s8 Z2 ~# Y1 v8 C" X" q" d10.4 Creep and Recovery in Human Tissue 391
0 V3 d' K6 |9 ~7 |( X10.4.1 Spinal Discs: Height Change 3917 L4 L; }+ i( y" D' @% F
10.4.2 The Nose 392" N0 X( v8 V% O$ K8 N( A
10.4.3 Skin 392
% Z6 n5 l$ v: @' Z1 B10.4.4 The Head 393  L* Z$ f7 X: z8 I
10.5 Creep Damage and Creep Rupture 3946 z9 S: t/ F3 i3 h" }
10.5.1 Vajont Slide 394
# m3 Y& d/ f1 R! z3 U10.5.2 Collapse of a Tunnel Segment 3949 j( @! G. z) M, _
10.6 Vibration Control and Waves 394
. s( B3 t- r9 H3 q, L10.6.1 Analysis of Vibration Transmission 394
1 \* ~# E2 L% N: g; U& u10.6.2 Resonant (Tuned) Damping 397
% F; \8 ]8 B1 Z' a( M10.6.3 Rotating Equipment Vibration 3975 f) e: R1 L) Q+ e; A  [3 S
10.6.4 Large Structure Vibration: Bridges and Buildings 398( @) u$ o* g5 M7 r3 @
10.6.5 Damping Layers for Plate and Beam Vibration 399( m( s% |: g7 u5 d7 L
10.6.6 Structural Damping Materials 400
: s0 K: H  [8 M9 ~2 |10.6.7 Piezoelectric Transducers 4028 Q! {$ r5 J0 \. [
10.6.8 Aircraft Noise and Vibration 402
# D$ J$ \$ R, y4 I' @- a10.6.9 Solid Fuel Rocket Vibration 4043 p/ f8 ]6 n1 d0 G4 J
10.6.10 Sports Equipment Vibration 404) `/ A  C- @- b; W% Y$ l: u$ k7 n# G
10.6.11 Seat Cushions and Automobiles: Protection of People 404
( j8 d! Z# Q) i% S# q3 j% C( C6 b10.6.12 Vibrationi n ScientificI nstruments 406
( p1 c' @1 [& ^/ u) D( a! L10.6.13 Waves 406+ N8 }# c" E$ ~/ q
10.7 “Smart” Materials and Structures 407
7 E7 ?- w! L& B10.7.1 “Smart” Materials 407
2 k" y, ~3 D- F5 {$ g; |& \10.7.2 Shape Memory Materials 408$ ~9 R( e' t; s3 Z, h
10.7.3 Self-Healing Materials 409" S' Y% d9 a( |7 k3 {
10.7.4 Piezoelectric Solid Damping 409. Q# l) z" T4 r* C
10.7.5 Active Vibration Control: “Smart” Structures 409/ j8 K: C- e8 m. b9 B/ c2 \
10.8 Rolling Friction 4098 w* r+ e6 S0 c' \, P% o
10.8.1 Rolling Analysis 410
6 U  r. X$ |0 _+ x/ _  O' r& Y10.8.2 Rolling of Tires 411
8 s" p0 _# q+ S6 \6 L/ T8 R10.9 Uses of Low-Loss Materials 412, _$ T# V# I: ^9 q& n  z+ o; X3 E
10.9.1 Timepieces 412+ @5 R" N# P- p7 M) i- M$ B: d; Y
10.9.2 Frequency Stabilization and Control 413: ?; b. \# z+ \/ L4 }% ^, O2 H
10.9.3 Gravitational Measurements 413
8 O' V. c  {, l1 o10.9.4 Nanoscale Resonators 4141 D& n+ [5 `- ~. k. Q5 V/ C% g0 c
10.10 Impulses, Rebound, and Impact Absorption 414, i" \1 t% _( }2 D6 t* H7 F3 s
10.10.1 Rationale 4140 ?" g0 j8 }$ I
10.10.2 Analysis 415& x) }- p7 E  L2 ^
10.10.3 Bumpers and Pads 418. y. k% d% ~$ x0 b" q  y3 P
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
: u- H; l$ P5 h! E8 n: _/ b6 [10.10.5 Toughness of Materials 419
, f- d- I* k; D) h' U4 ]+ w4 J10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
6 b0 w1 M  W. F! H! r10.11Rebound of a Ball 4214 c( J$ f$ Y5 n4 \* Q3 t3 k
10.11.1 Analysis 421
& Y/ i6 i7 I+ g: |0 R10.11.2 Applications in Sports 422
4 w. X: b8 H/ @4 I10.12 Applications of Soft Materials 424
# \( F$ j3 M! Q$ B! [$ f+ ]3 Z10.12.1 Viscoelastic Gels in Surgery 424: B3 T6 L' i1 s; \
10.12.2 Hand Strength Exerciser 424! P( B. J. N' C
10.12.3 Viscoelastic Toys 424
; j) E- R4 g& ]  w' v+ w; J10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425* ]% f6 z- G0 @; k
10.13 Applications Involving Thermoviscoelasticity 425
/ X; u5 f0 ^; i( q, `10.14 Satellite Dynamics and Stability 426
- J' H9 K0 `  D' G$ N; J10.15 Summary 4287 d6 `8 g; r$ @0 h
10.16 Examples 429
5 r# u5 B0 e% I/ u7 [10.17 Problems 431
& i) Y7 D& h0 E. u* L% D% ~3 HBibliography 431- b8 ?1 |1 s) J  n- ?8 s

3 e/ \' X% w! I% F. C# m" p+ J% |& C- C- T

! r: }9 _- W8 l7 f: E6 p5 A& NA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
: Q9 u6 |$ i. j4 K7 n; L' |" iA.1 Mathematical Preliminaries 441
! h+ Z3 \$ }1 g" VA.1.1 Introduction 441
$ n- O& y  o' `, ~4 IA.1.2 Functionals and Distributions 4416 j/ c% x7 L( D, ]
A.1.3 Heaviside Unit Step Function 4427 y/ ^0 E/ R" t# Z4 }+ ?( O
A.1.4 Dirac Delta 4424 f- T( \' j1 h! ^6 p7 V0 F, }
A.1.5 Doublet 4435 f' H: X6 f' P( f3 s9 s
A.1.6 Gamma Function 445
' P+ ^% M1 C2 ^! E- O: KA.1.7 Liebnitz Rule 445% U, f/ g* ^- a: t9 W5 J: {% Y
A.2 Transforms 4453 Q" U* c3 P" m* O  A8 ^* q2 ?
A.2.1 Laplace Transform 446) _6 N: ~# s  ~: }
A.2.2 Fourier Transform 446/ L) s$ j. n( Q6 C1 G
A.2.3 Hartley Transform 447
1 d+ p- x1 @  O: c' `7 ]# |  rA.2.4 Hilbert Transform 447
0 n- ^( D% c" ~- E" }' A: ~A.3 Laplace Transform Properties 448
% c2 F9 v3 k$ [. ?5 y* j. AA.4 Convolutions 4495 C& ]- M0 z2 a! R2 Y, C
A.5 Interrelations in Elasticity Theory 451
" R6 R# G7 Q- q* J2 [+ c6 IA.6 Other Works on Viscoelasticity 451
1 x) m  Z" q2 qBibliography 452
4 p7 u: F: g5 q. j) [- Q  ~" E
3 V* o* P; X8 ]/ a2 {: b: g# C% b9 U: o8 c1 u
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
9 M. a1 R/ d6 u% J! K$ e5 L  wB.1 Principal Symbols 455- Q" h8 u, L- d" ]4 i$ p2 ?
Index 457
( A; T# t- R; U6 J( w' k; I" v" n$ [+ T7 i; f! r% F+ ?8 {

" P, s3 G9 X) j! y, T( B6 E




歡迎光臨 機(jī)械社區(qū) (http://www.mg7058.com/) Powered by Discuz! X3.4