機(jī)械社區(qū)

 找回密碼
 注冊會(huì)員

QQ登錄

只需一步,快速開始

搜索
查看: 961|回復(fù): 0
打印 上一主題 下一主題

英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》

[復(fù)制鏈接]
跳轉(zhuǎn)到指定樓層
1#
發(fā)表于 2015-1-9 22:34:06 | 只看該作者 回帖獎(jiǎng)勵(lì) |倒序?yàn)g覽 |閱讀模式
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 0 ^3 G" E0 q* E/ a2 O0 c& i
% E* w$ }5 E. r
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下載次數(shù): 6)
* Y$ v  r7 j0 }# B; C6 `
+ q! l  ^( q' [ Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下載次數(shù): 6)
, `: ?+ x" x0 o+ D) x5 e
  \  b" C2 u$ K2 M& p目錄
" r& s9 n6 M6 {! d% v' ], n0 A9 c" A) m5 z
Contents8 W& D$ C7 X8 v9 ^! j' R
- y* l6 ~0 J% u
Preface page xvii8 ~3 E2 D' x2 f# ?, w# ~
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 H& x! |+ k3 ], S2 `. E. w
1.1 Viscoelastic Phenomena 10 {' ^4 b! x* g5 ~  l
1.2 Motivations for Studying Viscoelasticity 3/ e+ Z% |2 y( ^8 ^' a$ U% g
1.3 Transient Properties: Creep and Relaxation 3) ?8 F! |6 q& X& G; Q$ ^* |
1.3.1 Viscoelastic Functions J (t), E(t) 3
( O0 Y. R3 t+ f4 t! X0 {* c1 G1.3.2 Solids and Liquids 7
& Q, Z) ]0 N# m- Q: Q) Q4 L1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
' T0 q+ ]2 ?6 I  z! c8 t1.5 Demonstration of Viscoelastic Behavior 10
$ B9 Z  P, ~! T1.6 Historical Aspects 10* ?9 W- p' c5 {
1.7 Summary 11  |8 Z# z5 ?/ c9 D8 ^4 ~7 f& L
1.8 Examples 117 j8 }% Z0 D2 I* B8 m
1.9 Problems 12
, i3 D8 A; L3 \* k) v# D5 `# OBibliography 12
( N3 [) p8 n9 k6 B# ^& t3 I  p1 L5 o/ M# |  s1 u4 `& \( k6 P
, o; r# u" C) H3 C0 v

5 s. S. A  E# @3 T5 s
7 M1 U7 D% @$ p4 P' D9 |  ]* B* f' y. `" ^- D( x
; v% T0 W1 @  k4 z" V& ?  a0 j! c. |
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, O1 ?; b- ?+ j$ g
2.1 Introduction 14
: v! I: x" c, `- G! s2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
" k" R# B: |# p2.2.1 Prediction of Recovery from Relaxation E(t) 14% s2 D8 H5 c5 K  j
2.2.2 Prediction of Response to Arbitrary Strain History 153 c% X, R( l" }, S; O
2.3 Restrictions on the Viscoelastic Functions 17* i" Y) X: H9 p2 P5 H
2.3.1 Roles of Energy and Passivity 174 \- w, t7 U* [) @" e  y( j" W; v
2.3.2 Fading Memory 18
. x. U: Y+ ?$ K* F5 M2.4 Relation between Creep and Relaxation 19
' T$ Z' P0 z. n  p: N1 v) Y3 W2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
6 }5 _" C% @& h9 n0 `+ p! b( j2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
7 x! i5 m. N: O0 @2.5 Stress versus Strain for Constant Strain Rate 20
  i5 w9 }; q, |# \- o& F2.6 Particular Creep and Relaxation Functions 21& W5 y9 e" Y% U! O$ @
2.6.1 Exponentials and Mechanical Models 21- ~& a# x9 R- h) T% G
2.6.2 Exponentials and Internal Causal Variables 26& P% v1 U1 }4 F3 v* v/ o( b! t
2.6.3 Fractional Derivatives 27
/ [8 ~5 {0 k! }" @  }2.6.4 Power-Law Behavior 289 m% J* |  Y1 z
2.6.5 Stretched Exponential 298 `$ _" |/ m) [# o- _/ A, G
2.6.6 Logarithmic Creep; Kuhn Model 29+ G( }$ n% A/ h2 y+ T( U
2.6.7 Distinguishing among Viscoelastic Functions 306 a3 Q; S& o* [( r
2.7 Effect of Temperature 300 c4 J7 ]% J$ v6 J4 I2 f
2.8 Three-Dimensional Linear Constitutive Equation 33: |+ J% }4 Q# k+ p$ t6 r
2.9 Aging Materials 35, v: {0 N, h( l4 D
2.10 Dielectric and Other Forms of Relaxation 35
' K; w/ j5 R  l2.11 Adaptive and “Smart” Materials 36- f7 T; d1 D) ^: H3 Y2 D
2.12 Effect of Nonlinearity 37% ?5 C3 g, F. w/ v- [
2.12.1 Constitutive Equations 379 z3 ?( Q) L8 g; p0 W: X3 u: a
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
5 m' {- U7 Z7 f  A2.13 Summary 43
8 f" v0 X8 R. C! k  X; G2.14 Examples 43* [) O  s, J1 }" F6 i
2.15 Problems 513 Y( b) T+ I8 x. X: [; S5 B
Bibliography 52/ |* N* g& ~! R2 V
6 c, Q; G7 A+ w( ?  g5 F& @6 A

. O, y7 Z) [6 j. B! b, Z
* p( c, v7 V3 s  _7 l* x+ Y- ^1 T9 f/ ?8 G  Z* A" h: X( f
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 S' Q6 j: ~/ r8 F& h" ~& H& K3 f
3.1 Introduction and Rationale 555 c+ p9 J4 R1 x" x' K
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
2 r+ A' o* D0 b6 n5 [. Y- V3.2.1 Response to Sinusoidal Input 57
) [2 l$ n, j& z4 y$ r3.2.2 Dynamic Stress–Strain Relation 59
# v# |& }9 r- Y, T3.2.3 Standard Linear Solid 62& o$ p  T7 O, L/ x# F5 K8 H
3.3 Kramers–Kronig Relations 63/ ]& {5 F) z: s4 g6 }
3.4 Energy Storage and Dissipation 65
3 ^6 Y6 r1 j3 p: K. e3 F3.5 Resonance of Structural Members 67
$ [4 E7 _, X0 q1 H+ x; R: z3.5.1 Resonance, Lumped System 67+ h* {+ Q( d' y2 t/ R, F/ k0 y
3.5.2 Resonance, Distributed System 71
- p& V- S  n4 Q1 S) N3.6 Decay of Resonant Vibration 74" p! v3 o5 ]' z: `6 x
3.7 Wave Propagation and Attenuation 77
. U# Z7 k3 {. d3.8 Measures of Damping 79
" T- J4 Q& {, W2 n" ~2 ^3.9 Nonlinear Materials 79
1 O! H  J6 b. p4 _4 U3.10 Summary 81
+ l- D7 _6 @! W1 H# x3.11 Examples 818 x: B7 c) r, Q  r, i% y$ Q  f
3.12 Problems 880 i) [% Z) o  j% L/ F  S/ W7 C
Bibliography 89
% }/ E- f5 S1 g' E. P3 @
1 \0 |  K* F& d7 v+ \' [& C  h! H, ~  o3 j1 k" d  w8 U

: j% Y" }( r/ d$ q" W4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
* l' y# a( I( ^* B4.1 Introduction 91
  V9 E2 U$ N* s4.2 Spectra in Linear Viscoelasticity 92- [. R$ Z" v! n# @# h4 _. A, }4 i. F
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
4 ?3 [( a6 }& e4.2.2 Particular Spectra 93
4 \5 A' m- `' e; B) v2 f4.3 Approximate Interrelations of Viscoelastic Functions 95
. E( o- O9 H8 H2 @; h- ^5 f  p( k4.3.1 Interrelations Involving the Spectra 95; B' r! n  p4 \8 e! f
4.3.2 Interrelations Involving Measurable Functions 98% h$ T4 ^& `, ~  ^! D' m/ q
4.3.3 Summary, Approximate Relations 101
7 A+ K: T0 @# u4.4 Conceptual Organization of the Viscoelastic Functions 1014 G7 l5 ~1 ?& @  r3 {: _0 T
4.5 Summary 1046 g" {7 d: G' B  {& k3 I
4.6 Examples 104  Y9 s. Z6 x# T( p3 |% J1 w
4.7 Problems 1096 k$ |' ?- G, {4 C% f
Bibliography 1097 B$ @' T& i- J( @7 y$ d0 q5 Y
6 X/ K' H/ K0 |2 m1 X/ j% x' {/ |

/ e+ X7 y5 L1 c) P! j9 h
$ r0 v: H$ o5 V# o: P" z4 n5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
# |" E% v- t  k$ b5 W5.1 Introduction 1113 S2 i& S2 U! g2 T* [0 A
5.2 Three-Dimensional Constitutive Equation 111* E/ h9 ~- D. B0 G0 @9 J1 W6 @
5.3 Pure Bending by Direct Construction 112
& b! t$ S4 \0 ^/ V9 J  M5.4 Correspondence Principle 114$ p+ i6 F$ q& s/ w: y
5.5 Pure Bending by Correspondence 116
; Q2 R) m3 o. W  B# v9 `5.6 Correspondence Principle in Three Dimensions 116
0 q3 }7 ?* _5 j7 S9 j- ?5.6.1 Constitutive Equations 116: j0 n+ F2 y( X- Z+ ^- A6 ?3 \
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117. D; _& _, `% B4 H, u( O  D7 r
5.6.3 Viscoelastic Rod Held at Constant Extension 1199 n4 E, R9 |/ k1 }' ?
5.6.4 Stress Concentration 119
& j, ]! w& |# q9 t9 [7 W5.6.5 Saint Venant’s Principle 120& z) i4 Q9 u; f& m( @. j- G; f/ P
5.7 Poisson’s Ratio ν(t) 121
" h3 |) @" S# {& i3 K5.7.1 Relaxation in Tension 121% t4 o0 L9 \: J6 J7 t6 W. ?2 H
5.7.2 Creep in Tension 123
% ~+ K( G& M4 X$ [5.8 Dynamic Problems: Effects of Inertia 124
. E% i6 K9 @0 m) x/ M: p5.8.1 Longitudinal Vibration and Waves in a Rod 124/ `2 }+ z, r& x6 E/ [& I& z
5.8.2 Torsional Waves and Vibration in a Rod 125
9 [+ y  I% a" ]/ X$ e+ E. d5.8.3 Bending Waves and Vibration 1286 Z" c6 ]3 V8 `' K1 w) K3 B/ X
5.8.4 Waves in Three Dimensions 129
3 c! ], T' X! p) z5.9 Noncorrespondence Problems 131! h6 x% m/ S& s) ^" I1 ~6 [, ~1 W& |
5.9.1 Solution by Direct Construction: Example 131
( q# K# D7 U/ E) d3 n8 s5.9.2 A Generalized Correspondence Principle 132
3 F0 Y* {9 J$ z# N# O& h( [$ y  R( T5.9.3 Contact Problems 1324 H& W" ~9 S/ y# _, ]3 x! Q
5.10 Bending in Nonlinear Viscoelasticity 133
1 o; k# n1 u, X7 d' [0 S7 \& v2 f5.11 Summary 134$ B5 ]# ?1 d# Y; j6 ~
5.12 Examples 134. m, U5 ]9 R- Z2 P0 d# R
5.13 Problems 142
7 S: `. K3 _" oBibliography 142
/ ^1 m2 _  ~4 A! j4 ^( U9 g' a
! ]  X* h) x/ A$ A6 H
; U. D9 j1 R9 [
3 v: {7 g6 l* e. p4 \7 G3 B6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145# T* j3 u- g0 A5 P& i
6.1 Introduction and General Requirements 145
. P8 S/ M/ e5 ~7 F8 E6.2 Creep 146
* N0 n) a1 ]2 ]: z2 B: M6.2.1 Creep: Simple Methods to Obtain J (t) 146
) H6 W5 y( S3 q- `6.2.2 Effect of Risetime in Transient Tests 146
; m( {' x) V8 I- O! F5 z0 V, w4 H* W- X6.2.3 Creep in Anisotropic Media 148% N1 w% I& V- M" n
6.2.4 Creep in Nonlinear Media 148
) n  {; F9 N& W$ v6.3 Inference of Moduli 150' q. d  H( m/ t
6.3.1 Use of Analytical Solutions 150/ c, D: j3 O  H8 i; h
6.3.2 Compression of a Block 151
6 c% b) x8 W- [4 D' v& m6.4 Displacement and Strain Measurement 152$ \8 z6 f) n3 b3 i) k8 q1 a, Z# m& t
6.5 Force Measurement 156
' k- S0 u! i, ~1 @- O6.6 Load Application 157: d* T! D8 a, Z) `/ \  U
6.7 Environmental Control 1578 Z( ^7 }4 n) o* y7 h2 f& Z$ Y! Q
6.8 Subresonant Dynamic Methods 158
3 X3 C2 ]) e7 _6 Z. T5 N  d8 N6.8.1 Phase Determination 158
- V  B1 K* }5 _( `! {/ e6 Q6.8.2 Nonlinear Materials 160- K$ w5 n2 b2 s5 t: g9 V
6.8.3 Rebound Test 1611 r- D+ n4 C9 S- m# {0 [
6.9 Resonance Methods 161
  @! L% _$ C5 E  F( ^+ `6.9.1 General Principles 1618 T( N5 H. m( |9 a
6.9.2 Particular Resonance Methods 163- ]' i! f! l4 F% h0 J0 R
6.9.3 Methods for Low-Loss or High-Loss Materials 1666 ~+ M& S& B& L+ `
6.9.4 Resonant Ultrasound Spectroscopy 168
# ^0 w0 y! f/ ]: r6.10 Achieving a Wide Range of Time or Frequency 171
& E  Q( t- E3 D) X1 M9 B6.10.1 Rationale 171, K. O2 q  m) K3 n( N2 {& ?
6.10.2 Multiple Instruments and Long Creep 172
8 O0 c% Q" @5 y; Y4 _6.10.3 Time–Temperature Superposition 172
" t" n. \( U2 _  Z" J2 n  h, e; n6.11 Test Instruments for Viscoelasticity 1736 `, b8 y. n' _$ V$ S
6.11.1 Servohydraulic Test Machines 1737 m9 E, t5 [7 g1 D: \
6.11.2A Relaxation Instrument 174: G! Y2 p, }8 c
6.11.3 Driven Torsion Pendulum Devices 174
5 q6 n  N% \" ?6 v. n6.11.4 Commercial Viscoelastic Instrumentation 178' \) o( L0 N& E5 z: i
6.11.5 Instruments for a Wide Range of Time and Frequency 179
1 b( i% _- J$ V% e$ T6.11.6 Fluctuation–Dissipation Relation 1820 C. o- e2 u; o0 v5 {8 \; t
6.11.7 Mapping Properties by Indentation 183$ f* }5 n# B: e: H+ r; f
6.12 Wave Methods 184
$ u7 m+ F8 U. Y* a' j/ T& d6.13 Summary 188
1 `8 s, }$ ~, ~1 t/ l) Q- z: n6.14 Examples 188
# y& t0 d, ]! l4 w7 u5 R6.15 Problems 200
2 X% v) i0 g3 `1 vBibliography 2014 {  s# o0 U" W2 U2 [/ c9 D! U5 o
6 m% W0 \+ C' r1 j* o

+ i1 ^4 t7 S; G' a" Q# z! R1 V) n4 }
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
/ A9 ~) a  c' G  |! O3 K7.1 Introduction 207: Y: ]4 P! G6 E8 K) Z' g- \4 L
7.1.1 Rationale 207
  P+ V8 }$ M$ a. ~  M! E6 I) ^; ]7.1.2 Overview: Some Common Materials 2070 S! e. X' P6 C- L
7.2 Polymers 208  T& Q3 Q" C2 R% `5 Y3 C1 ^
7.2.1 Shear and Extension in Amorphous Polymers 208
/ N  S5 C$ f, O: ^7.2.2 Bulk Relaxation in Amorphous Polymers 212
" z) F! V. L- J( s) P! X7.2.3 Crystalline Polymers 213
/ h% F" S, Z3 b7 P5 \5 i7.2.4 Aging and other Relaxations 2145 }5 R7 [0 b( {& p5 y. v+ H* H& Y
7.2.5 Piezoelectric Polymers 214
# V& O/ B8 a8 \0 }) n" r7.2.6 Asphalt 214
0 m1 x1 k6 K/ K' q+ u* b" t7.3 Metals 215
; M  {) n$ ]$ [8 f7.3.1 Linear Regime of Metals 215: M$ B! @$ U* K7 n4 ~0 W
7.3.2 Nonlinear Regime of Metals 217  |; i+ k3 G! l& f- w' l2 V3 U
7.3.3 High-Damping Metals and Alloys 219% g2 z3 j2 [: t( j/ s
7.3.4 Creep-Resistant Alloys 224
7 n! ~% c0 H5 A$ g) M* w7.3.5 Semiconductors and Amorphous Elements 2259 e! f" h/ F- \/ B: Z( j
7.3.6 Semiconductors and Acoustic Amplification 2265 X9 U8 D  J( v3 r+ U! S
7.3.7 Nanoscale Properties 2265 q* p( F8 Q7 `. \  k$ u  i* D" r, U( m8 a- o
7.4 Ceramics 2274 V8 F# _, x5 L/ V
7.4.1 Rocks 227/ z/ t: B' c- n: W$ g) E: ?
7.4.2 Concrete 229
; Q) f1 s) M$ V! a/ Z+ W7.4.3 Inorganic Glassy Materials 231
, W* H, ~1 c2 a. Z- R9 y4 m# Z7.4.4 Ice 231( @6 T3 Z- ?' C" h
7.4.5 Piezoelectric Ceramics 2320 f3 c) i# {/ s% N- L" S( F
7.5 Biological Composite Materials 2330 ^- f% u" m+ M+ g' c$ q
7.5.1 Constitutive Equations 234' u8 N; L9 E" X( v
7.5.2 Hard Tissue: Bone 234  A% \2 ]% J7 j$ H; s
7.5.3 Collagen, Elastin, Proteoglycans 236
/ {* E2 B) e! B9 g4 Q2 K  `- J4 D7.5.4 Ligament and Tendon 2379 H3 P& |, g/ I7 A3 L
7.5.5 Muscle 240( B2 @# d" \+ Z7 v' k" v
7.5.6 Fat 243
  {6 u4 j) Q# D7.5.7 Brain 243
& X/ u; a' f/ j; e, I; M' E: `7.5.8 Vocal Folds 244
! U( B8 l2 m) f+ i7.5.9 Cartilage and Joints 244  e; G: ^/ T9 k2 z- u+ m5 l7 Q" L
7.5.10 Kidney and Liver 246. m4 R& ^' q1 j  y
7.5.11 Uterus and Cervix 246/ h" R+ l5 D/ w+ k9 D/ C  D) f/ O
7.5.12 Arteries 2471 U& k* x$ l: m' s4 i- J: s
7.5.13 Lung 248
; v( n8 V7 {! W, M! C7.5.14 The Ear 248: w( Q/ p# F/ F+ t! X" T4 j: P/ o
7.5.15 The Eye 249) v0 y. H+ M" Y: i  m
7.5.16 Tissue Comparison 251
1 C) y: T8 i1 ^: z  n; d: \7.5.17 Plant Seeds 2521 b. g$ g0 J; E/ p, Z
7.5.18 Wood 252/ E: p1 T" h, n+ J" Z! q/ d
7.5.19 Soft Plant Tissue: Apple, Potato 2537 B7 p7 u7 L) O" K7 W
7.6 Common Aspects 253, w( m# E) }3 E
7.6.1 Temperature Dependence 2531 m) G8 B. i: n* H/ q7 F
7.6.2 High-Temperature Background 254
+ T3 [; k/ k3 Z3 g4 o7 C7.6.3 Negative Damping and Acoustic Emission 255
5 p2 v# K2 Z* q9 U* |2 U7.7 Summary 255
% x! m, D& Z6 r9 }" w  E, i& ~7.8 Examples 255
) B6 }0 W% g$ A- k- A9 F% A7.9 Problems 256
+ c& r7 s4 ~& ?# ~Bibliography 2574 e  }& c9 G! _
3 j% ~; P4 D# m, s  l& C

+ M5 W0 T8 a- f$ v; c' |5 T5 o, V- e) g
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5 n5 X& h9 C% W2 S1 A1 ?8.1 Introduction 2714 C, X" q$ Z0 V, o5 t+ P9 x  j1 Y
8.1.1 Rationale 271
1 g" F8 l' g- }  X7 }) g! g1 w( {8.1.2 Survey of Viscoelastic Mechanisms 271# E( m: i$ w, r
8.1.3 Coupled Fields 273
4 o% W6 T( ^2 z1 p' v: _8.2 Thermoelastic Relaxation 274
: ]1 n8 a6 {' g4 v& V8.2.1 Thermoelasticity in One Dimension 274
. e+ v9 J& U( u8.2.2 Thermoelasticity in Three Dimensions 275, {* K6 d. R1 V4 [+ P
8.2.3 Thermoelastic Relaxation Kinetics 276
2 C) l, X0 A% a3 t! }; T8.2.4 Heterogeneity and Thermoelastic Damping 278$ A* s/ n3 m0 L! z. i
8.2.5 Material Properties and Thermoelastic Damping 280* Y1 l9 `6 Z. n" [8 I
8.3 Relaxation by Stress-Induced Fluid Motion 280  _( `1 R2 |4 g, z0 T) q) `& x
8.3.1 Fluid Motion in One Dimension 280
! l9 {0 ]9 m" E2 M' E8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
3 ]4 ~) o0 b. ^4 E2 t: [7 V9 b8.4 Relaxation by Molecular Rearrangement 2863 x) A2 b8 i, n, h- |7 P3 `
8.4.1 Glassy Region 286
0 p! T3 m5 [. m3 L8.4.2 Transition Region 287
1 h/ T' j2 v9 O" b8.4.3 Rubbery Behavior 289
' P/ o( w. [) a8.4.4 Crystalline Polymers 291
, T6 I3 u4 w' R( Z0 c* P8.4.5 Biological Macromolecules 2922 |9 [8 t+ @  s# |
8.4.6 Polymers and Metals 292
: k8 b  t: y/ {8.5 Relaxation by Interface Motion 292: V& R1 r1 i2 k3 r9 p8 w! B% `; k
8.5.1 Grain Boundary Slip in Metals 292
: Y7 R+ K2 M" |; k. u8.5.2 Interface Motion in Composites 294
- @) ~3 i: ~' O; T$ ]  u8.5.3 Structural Interface Motion 294: W8 q! D4 c+ i: B+ v* e3 G1 o
8.6 Relaxation Processes in Crystalline Materials 294
7 j6 E# ?0 r) ^1 Q! N6 ^9 _8.6.1 Snoek Relaxation: Interstitial Atoms 294$ @+ X5 u3 i/ i
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 2989 j0 _+ D- N+ j
8.6.3 Gorsky Relaxation 299) {# g1 v; z9 f
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
7 _) l9 ?* E% U1 l# N7 c8.6.5 Bordoni Relaxation: Dislocation Kinks 303
: T, A6 D, h+ f) U% U( L8.6.6 Relaxation Due to Phase Transformations 305$ @% T$ g0 H! t6 D8 N# u% j
8.6.7 High-Temperature Background 314
6 Z1 s! H2 |0 P# L) e1 j/ M+ i7 i8.6.8 Nonremovable Relaxations 315
0 @4 Y' ^2 m$ h# m) U+ H8.6.9 Damping Due to Wave Scattering 3163 e1 G$ M& a; K! u! p1 h
8.7 Magnetic and Piezoelectric Materials 316. {7 p4 O4 h$ R  @  q- t
8.7.1 Relaxation in Magnetic Media 316
8 y2 z- P- L* o6 p! r- }8.7.2 Relaxation in Piezoelectric Materials 3182 E8 z$ f$ r/ i- n
8.8 Nonexponential Relaxation 322
. H5 Q. ?- U8 _) M) v7 K. t& @8.9 Concepts for Material Design 323
! w4 h  K) d( ~0 a" z8.9.1 Multiple Causes: Deformation Mechanism Maps 323. Y0 w. X; d6 v
8.9.2 Damping Mechanisms in High-Loss Alloys 326* V3 S) x" w* X, |
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
7 d1 f9 R: }: Z7 L& @6 c8.10 Relaxation at Very Long Times 327& n  l5 Q% u3 ?6 }" p+ O
8.11 Summary 327$ C" T8 A* U8 B/ m5 E/ @4 u+ |0 @5 K
8.12 Examples 328
6 ~6 e5 b  Q6 P$ v6 N! L* ~1 G3 Z8.13 Problems and Questions 332
" ?7 Y# c  y7 L8 G" `Bibliography 332
! P8 z! a. @# \/ [. }1 d* G
" A/ Y( p; t9 [: L6 C( b0 P: A3 b. |- U1 S" V1 h
" O) K5 }, Q( g) u
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341' Y3 |" o1 w) k
9.1 Introduction 341
/ n" m, g$ s* `" ^9.2 Composite Structures and Properties 341  }  b# @2 T: b% F- ]' I4 @7 G
9.2.1 Ideal Structures 341
3 P2 M8 D5 K6 v7 Q9 [9 P( C' M9.2.2 Anisotropy due to Structure 342
  G4 G% _6 F) |: a- w2 T9 K9.3 Prediction of Elastic and Viscoelastic Properties 3444 h; j# C; w1 i2 s: ?9 e
9.3.1 Basic Structures: Correspondence Solutions 344
6 }0 a" g& f) o7 S6 b7 B9.3.2 Voigt Composite 345, U) \, w6 ~% d3 e5 V1 c, X& r
9.3.3 Reuss Composite 345/ R( u8 L& ~- o8 }7 B
9.3.4 Hashin–Shtrikman Composite 346
# P) X. k- Y+ ~9.3.5 Spherical Particulate Inclusions 347% t; k$ [' Z9 S, k: _5 D) M
9.3.6 Fiber Inclusions 349
7 k- K4 P) q% y5 z% X; Z9.3.7 Platelet Inclusions 349
" Z9 ?8 q" a2 N' q* J3 S/ ^, T9.3.8 Stiffness-Loss Maps 350: f8 W+ m8 b/ |! y' q8 e# d' m
9.4 Bounds on the Viscoelastic Properties 353; z7 b5 z% V+ B0 Y: M
9.5 Extremal Composites 354
  }' h* x4 o7 Z$ g; Y9.6 Biological Composite Materials 356/ w& I7 O+ F9 @% t, d
9.7 Poisson’s Ratio of Viscoelastic Composites 357
4 F4 u/ b* \* s2 m4 l% {5 \9.8 Particulate and Fibrous Composite Materials 358* ^- G& n6 {& v& C1 e
9.8.1 Structure 358
, X- C. q. r% [9.8.2 Particulate Polymer Matrix Composites 359
4 M9 i% T& R6 F. T# G9.8.3 Fibrous Polymer Matrix Composites 361
* x& B/ W  d: ], l4 U( H5 w9.8.4 Metal–Matrix Composites 3628 G7 j3 a9 v, p/ |
9.9 Cellular Solids 363
+ ]6 y- c2 B0 Q: g2 z$ o9.10 Piezoelectric Composites 366+ M  ~: `" ]5 p% t( ?! P
9.11 Dispersion of Waves in Composites 366
- o! `% P: c+ t- _0 L9.12 Summary 367
1 J# [4 `# I4 f( Y: j9.13 Examples 367
; V. C# Z) d8 F. x+ @9.14 Problems 370& U/ K7 Z" g* m5 N1 E* Q
Bibliography 370
. ]" T$ c% z* {3 U2 g4 x! F# f0 K- q1 i& K5 a! C

' q7 Q2 }5 G) Q0 i8 j) D
- k! w; K- Y- {5 Z10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 3778 G7 _! f) @- U1 w6 X& H0 B. R
10.1 Introduction 377
- N/ C; `3 v3 w- n* z; o10.2 A Viscoelastic Earplug: Use of Recovery 377
% }9 B+ W  v/ }2 l( M10.3 Creep and Relaxation of Materials and Structures 378
3 p( r6 [, r( U$ y, w/ l10.3.1 Concrete 378# s( B0 m9 c5 R) h. v$ ?+ U
10.3.2 Wood 378
# i6 H$ S$ x4 E* |$ O  A" E10.3.3 Power Lines 379
6 f7 \; @" _+ B& O" J" |# ]10.3.4 Glass Sag: Flowing Window Panes 380
" H! L* B" @  x8 S( ]10.3.5 Indentation: Road Rutting 380
  M3 |) C$ o& p" }$ v* o10.3.6 Leather 3813 G- a7 A$ A: ?4 o  M' L0 y# ^5 |! O
10.3.7 Creep-Resistant Alloys and Turbine Blades 381
' _8 v6 Z  k' ^; A4 p. `% q) j10.3.8 Loosening of Bolts and Screws 382, H' y6 P1 O( |, w  Y$ ~
10.3.9 Computer Disk Drive: Case Study of Relaxation 384' t" o9 A- G, R, F$ S  o4 H
10.3.10 Earth, Rock, and Ice 385
; G: d& R& X- M5 X2 M& t0 s# @10.3.11 Solder 386( T; ?7 q+ }4 D, x1 z$ k0 r" }2 R9 \
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387, y3 {9 E; S1 O
10.3.13Tires: Flat-Spotting and Swelling 388% G2 i4 h9 U/ p% t, K
10.3.14Cushionsfor Seats and Wheelchairs 388' L' P/ D& P7 F2 r' p
10.3.15 Artificial Joints 3893 _7 g' H3 ^* R7 U( J2 n& ]
10.3.16 Dental Fillings 3896 w1 }( g/ [& Y; U8 e2 C7 P% e
10.3.17 Food Products 389
8 S( x  F; d" d$ V6 z10.3.18 Seals and Gaskets 390
: Y3 x# C' k2 V' h9 U1 Q+ V, g10.3.19 Relaxationi nM usical Instrument Strings 390$ H4 Z/ ~4 x& N6 y$ U( Z
10.3.20 Winding of Tape 391) j& d6 R8 w' a# z7 l
10.4 Creep and Recovery in Human Tissue 391
, z' m5 H, v. l4 d( Y- L  w10.4.1 Spinal Discs: Height Change 391
, n* q/ F+ w% ]( @; M8 X$ {; D10.4.2 The Nose 3929 r( D& m4 G5 L- l6 f2 }" F/ q$ a
10.4.3 Skin 3924 S2 M7 [" m% I& y% {, X
10.4.4 The Head 393
' m" e3 c) ?7 g8 \9 n10.5 Creep Damage and Creep Rupture 394
0 ~! X% o9 N/ Q10.5.1 Vajont Slide 394: L" \' ?1 O& s" n' J* q
10.5.2 Collapse of a Tunnel Segment 394
3 R9 p# _# X# R) I10.6 Vibration Control and Waves 394. _7 Q( Z+ a% e/ H7 T
10.6.1 Analysis of Vibration Transmission 394
% l& e6 C9 Z; V6 x: _( q+ O9 k5 E# C10.6.2 Resonant (Tuned) Damping 3973 Q; Z/ s: b, M
10.6.3 Rotating Equipment Vibration 3971 O1 h$ ]: i6 @. u
10.6.4 Large Structure Vibration: Bridges and Buildings 398
" E& V# P2 c2 u10.6.5 Damping Layers for Plate and Beam Vibration 399
9 m! B/ l7 K) z) V( D10.6.6 Structural Damping Materials 400
6 W( s4 N' Y; ~3 _4 x, z8 p10.6.7 Piezoelectric Transducers 402
$ y! F4 c, O2 Z, z( j% r10.6.8 Aircraft Noise and Vibration 402
. Z  [* S8 n# X! h: i6 @10.6.9 Solid Fuel Rocket Vibration 404
7 z- X: t  @5 E5 C4 ^9 F6 h. `10.6.10 Sports Equipment Vibration 404
% s# p" k) `' y6 h9 w10.6.11 Seat Cushions and Automobiles: Protection of People 4043 R+ T6 A0 u& H2 }8 T+ B
10.6.12 Vibrationi n ScientificI nstruments 406
/ a/ R3 T9 l! k8 D) Q8 D10.6.13 Waves 406
$ R6 F- A% ^/ P" n! \6 l9 r2 U7 r10.7 “Smart” Materials and Structures 407
' C& f5 K8 F/ m( q; f7 `8 V9 f3 e10.7.1 “Smart” Materials 407+ y# b: J' O4 a
10.7.2 Shape Memory Materials 408
' {/ j6 K8 T0 k: x10.7.3 Self-Healing Materials 409! U: d; }' \+ X
10.7.4 Piezoelectric Solid Damping 409# E* t/ d0 }$ V+ @/ A
10.7.5 Active Vibration Control: “Smart” Structures 409
$ y+ _2 i8 T% V, _9 `! ^& \- N10.8 Rolling Friction 409) |5 R( B" I) ~4 o. n
10.8.1 Rolling Analysis 410
) A3 Z" x& w5 u' Y9 P10.8.2 Rolling of Tires 411
7 R5 \/ u! j7 E. D10.9 Uses of Low-Loss Materials 412
8 Z8 b1 ~& ~# A! C5 |10.9.1 Timepieces 4125 c; l* S. n* K2 X0 O
10.9.2 Frequency Stabilization and Control 413
  [/ b( y9 q0 T- y; Y3 Q) I2 Y10.9.3 Gravitational Measurements 4130 s8 h$ ^4 Z3 T" o) _* E4 Y
10.9.4 Nanoscale Resonators 414% D# A" O6 F0 U) g/ U) E4 {( l
10.10 Impulses, Rebound, and Impact Absorption 414' z* k( |7 K% H  V
10.10.1 Rationale 414  i3 ~# P' h% O1 n" w6 z. h4 K
10.10.2 Analysis 415
+ C& t; T3 j/ s& Z: ^. i; g10.10.3 Bumpers and Pads 418
3 a; x' Q; a& W8 Z# \7 H6 P' J# c$ ]10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
/ p' F) q8 ?  E9 `: R, J10.10.5 Toughness of Materials 419
$ `3 O/ Z! a) T, j, o# k3 r10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420) B: ]: f; f8 ?' c$ e: S& z2 o
10.11Rebound of a Ball 421
9 l6 \  A! g; w6 z10.11.1 Analysis 421
& B) \2 q" h) ]# w10.11.2 Applications in Sports 422
( a: n- v9 z+ H" X1 v10.12 Applications of Soft Materials 424; O$ f, A" J* v# r$ h+ @( T3 p0 U* |
10.12.1 Viscoelastic Gels in Surgery 424
1 B) [1 B! e2 r1 Z9 b7 f3 x10.12.2 Hand Strength Exerciser 424
; g4 y( [; x7 l4 k4 T10.12.3 Viscoelastic Toys 424! r! w- a! |7 [/ G, r; D
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
7 p8 G+ L! c7 _( l7 L# p10.13 Applications Involving Thermoviscoelasticity 4256 {3 V0 w) s3 @+ U0 p
10.14 Satellite Dynamics and Stability 426
4 `3 J/ k4 J! ~4 U1 b0 v10.15 Summary 428
' C6 `2 t. z2 h  _. k2 F* J- K10.16 Examples 429
4 h- @# N; N- I10.17 Problems 431$ ~$ E' j! p, f; i) s7 p6 q
Bibliography 431. Z' `& `# x+ a' E$ \# D* v

! _  t. [& d4 u# w5 @3 R5 n( X$ w4 ^2 i8 w+ M: \

% M1 I& s% d" v4 i$ M9 m% |A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4418 M% a2 o( k2 M4 ]
A.1 Mathematical Preliminaries 441& x  S( C4 G* ]4 _8 h1 X" Y6 d
A.1.1 Introduction 441
% @2 q( F% m/ e9 OA.1.2 Functionals and Distributions 4417 e# m, b" o$ H3 L2 i9 [
A.1.3 Heaviside Unit Step Function 4424 A7 S5 M4 [! M7 I' n
A.1.4 Dirac Delta 4429 \% q* b) _& b$ t
A.1.5 Doublet 4431 k6 l( `" k2 _2 @6 `: j
A.1.6 Gamma Function 445
: D1 b5 c1 L9 f- D( ~+ b/ XA.1.7 Liebnitz Rule 445
. B) e( [2 G0 h* AA.2 Transforms 445
- ^2 k, Q9 U2 ^; n, U+ XA.2.1 Laplace Transform 4466 Q. {% b- Z" C2 P- w, k
A.2.2 Fourier Transform 446
/ Z. E8 L4 [% [2 cA.2.3 Hartley Transform 447& z; v7 x2 Q  n- O0 L+ ]$ s
A.2.4 Hilbert Transform 447
9 V" U- `' d8 t9 \  U$ LA.3 Laplace Transform Properties 448" u8 }$ h  X1 N0 ]1 v2 S
A.4 Convolutions 449: p. k$ i5 Y, ^& f. L
A.5 Interrelations in Elasticity Theory 451
( R$ ^" f  G$ p  H. I8 ?A.6 Other Works on Viscoelasticity 451; v7 z8 J) ~' N& y8 A% p; p4 e( Q
Bibliography 452. w" ^0 Z) @  p1 E1 \  ]

! Z: R8 R7 {: z8 U* v5 Q; R
& m/ \" A3 n9 Z) d4 m, p8 KB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4551 W$ Q8 f  w' a: O& H. j+ D
B.1 Principal Symbols 455$ V9 |9 l( A! n) |9 e& Q# U
Index 457
9 I  O! C: p& T  e2 E/ @7 \; j9 B. `. e! |* B

+ F% D4 Q8 i, T1 m6 z! r
回復(fù)

使用道具 舉報(bào)

您需要登錄后才可以回帖 登錄 | 注冊會(huì)員

本版積分規(guī)則

小黑屋|手機(jī)版|Archiver|機(jī)械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2024-9-22 07:06 , Processed in 0.119974 second(s), 22 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復(fù) 返回頂部 返回列表